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  Introduction 
The detection and tracking of vehicles moving at hypersonic speeds (> Mach 5) at altitudes of ~100 km 
has been of growing interest due to the ongoing development of hypersonic glide vehicles (HGVs) by the 
U.S., Russia and China [1]. This challenge is notably different from traditional ballistic missile systems 
whose re-entry vehicles move at hypersonic velocities but at much higher altitudes on a ballistic course. 
Hypersonic glide vehicles are also designed to be able to make sudden turns along their flight path 
making prediction of their trajectories difficult. Their ability to maneuver, combined with their high 
velocity and altitude make them difficult to track. The combination of these characteristics presents a 
challenge for anyone attempting to defend against a hypersonic glide vehicle attack by generally 
shortening the time available to react. That reaction can involve moving potential targets or attempting to 
detect the hypersonic glide vehicle and intercept it before it reaches the intended target. Figure 1 
compares the trajectory of hypersonic vehicles compared to that of a traditional ballistic missile.  

The flight altitude of hypersonic glide vehicles (~40-100 km) makes them more difficult to detect early in 
their flight with over-the-horizon radar as compared to traditional ballistic missile systems. Their lower 
altitude means that radar looking over the horizon will see them when they are closer to the radar 
shortening the time for response. Their maneuverability also means that they can attempt to avoid 
detection by skirting along the edge of the range of statically positioned radar installations. The 
challenges of their detection and tracking are noted in [2].  

A potential solution to this difficult tracking problem is to attempt to detect HGVs from above instead of 
from the ground or at sea. A space-based sensing technology could be an appropriate solution to this 
detection problem. The problem is determining what kind of space-based system one would use. If one 
were to deploy sensors on satellites this raises a number of questions. What would the sensing technology 
be? How many satellites would you have to deploy with this technology How big would the satellites be? 

 

Figure 1. A comparison of flight profiles from hypersonic glide vehicles and hypersonic cruise 
missiles from [1]. 
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LANL has a history of deploying satellite sensing technologies dating back to the 1960s with Project Vela 
[3]. However, before deploying any kind of solution, one needs to determine what the potential is for that 
system to be able to perform the function one intends. Consequently, the ability to have a tool that could 
help one design a sensing system, in this case, a satellite-based system would be useful. For the problem 
of detecting and tracking HGVs, a potential solution would be a constellation of satellites deployed in low 
earth orbit (the low earth orbit region is defined as <2000 km in altitude) using radar as the sensing 
technology. However, the questions asked above about how many satellites and how big are important as 
that will drive the overall complexity and cost of such a system. One wants to be able to design a system 
that is feasible at tracking but not so costly that it cannot be built.   

Given this challenge, the work presented in this report summarizes the development of an analytical tool 
that can help one determine design parameters for a constellation of satellites (expected to be in low earth 
orbit) using radar-sensing technology to track vehicles moving at altitudes relevant to HGVs. We begin 
by developing a capability to describe the relative positions of sensors and targets to track. This is 
followed by a discussion of the radar cross section of potential targets and how one can detect the targets. 
For targets, we use previously published HGV geometries. The angle of view of a target and the relative 
position, velocity and acceleration of the source, detector and target of the radar signal are obviously 
important parameters to understand for such a system. For signal processing, understanding what impacts 
the signal-to-noise ratio is key to understanding how much power one will need for a satellite given 
assumptions about radar frequency band and transmitting and receiving antenna properties. Lastly, one 
needs to have a method to track the vehicle given the detection by radar. The geolocation of a target will 
have an uncertainty driven by the signal quality and how many views one has of the target given the 
number of satellites within range of the target. The final section on geolocation ends with an example of a 
given vehicle trajectory scenario being tracked with different satellite configurations. 

 References 

[1] Tingley and Trevithick, “Missile Defense Agency Lays Out How it Plans to Defend Against 
Hypersonic Threats.” June 19, 2021. https://www.thedrive.com/the-war-zone/41164/missile-
defense-agency-lays-out-how-it-plans-to-defend-against-hypersonic-threats. 

[2] Watts, Trotti, Massa. “Primer on Hypersonic Weapons in the Indo-Pacific Region.” August, 2020. 
Atlantic Council Scowcroft Center for Strategy and Security. ISBN-13:978-1-61977-111-6. 

[3] Grant, Virginia. “Cold War Watchmen.” Natioal Seucrity Science Magazine, Los Alamos National 
Laboratory, Summer 2020 issue, pg 44. 
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 Geometric and Signal Simulation 
The goal of the geometric simulation piece of the project is to simulate representative scenarios of sensor-
target relative positions. Notably, we make no attempt to certify that we can predict the exact 
measurements that would arise from a given constellation for a given flight, but merely that we can 
replicate the type, frequency, and robustness of such measurements in order to determine the efficacy of 
the proposed system. This relaxed requirement on position accuracy combined with our desire to evaluate 
sweeps of many constellation design variables led us away from high-precision commercial tools such as 
STK. Instead, we have created an integrated Python package optimized for speed and flexibility, which is 
capable of efficiently simulating large sensor constellations along with a few types of target flight 
profiles. Careful architecture allows us to build large constellations up from a single orbit and a number of 
rotations while allowing queries of the entire constellation over many time steps to be calculated by pre-
compiled machine code—thus sidestepping the speed issues associated with interpretive programming 
while retaining its flexibility. 

All vector outputs are given in Earth-centered inertial (ECI) coordinates. This system is centered at 
Earth’s center with the Z axis pointing geographic North and the X and Y axes completing a right-handed 
set intersecting the equator. Timing of the simulation is aligned such that the X axis intersects the prime 
meridian at t=0. For internal conversion between Earth-fixed and ECI coordinates, we assume a spherical 
Earth and constant rotation rate. Base units are kilometers and seconds. 

 Orbit Simulation 

Each type of vehicle we expect to simulate has its own class in the simulation framework. By far the most 
used is the conic orbit class, which simulates the trajectory of the RADAR satellites. This is constructed 
in two steps.  

First, we calculate the position, 𝑅!" ,OOOOOOOO⃑  and velocity, 𝑉!" ,OOOOOOO⃑  in the 2-D orbit frame as depicted in Figure 2. 
Position and velocity in this frame are simple functions of the orbit semimajor axis, 𝑎, eccentricity, 𝑒, and 
true anomaly, 𝜃. All but 𝜃 of these parameters are constants, and 𝜃 is calculated directly from the time. 
Unfortunately, the calculation of True Anomaly from time involves solving the Kepler equation (equation 
1) for the eccentric anomaly, E, which must be done numerically for	𝑒 ≠ 0. To avoid the costly task of 
solving this for every satellite at every time step, the entire solution space is pre-solved and the solution is 
interpolated when needed. Fortunately, we are interested mostly in circular orbits where 𝑒 = 0 and this 
step is not necessary. 

𝑀 = 𝐸 − 𝑒 sin𝐸 
1 

 

Figure 2. 2-D conic orbit  
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Then, we reorient the position and velocity vectors into the ECI system using the inclination, 𝑖, argument 
of perigee, 𝜔, and ascending node, Ω. The set {𝜔, 𝑖, Ω} constitutes a 3-1-3 extrinsic Euler sequence, from 
which we generate the constant rotation matrix, [𝐿]. To orient the position and velocity in 3D space, we 
simply multiply by	[𝐿].  

𝑅O⃑ = [𝐿]𝑅!"OOOOOOO⃑ 	, 	𝑉O⃑ = [𝐿]𝑉!"OOOOOO⃑  
2 

 

Figure 3. 3-D orbit orientation using Inclination, perigee argument, and ascending node. 

 Target Simulation 

We created a few options for target simulation. So far, the most used has been our simple case of a great-
circle route. The target is given a starting and ending point in latitude-longitude-altitude coordinates and 
time, and then is simulated as flying along a perfect circular route from start to end at constant speed. This 
over-simplified solution is useful as a baseline case. We can say with relative certainty that any solution 
which cannot track this target cannot track any target of interest.  

The next target simulator is designed for flexibility, and allows for realistic flight profiles. By stitching 
several great circle segments end to end, it creates a composite flight path which may be composed of 
complicated maneuvers. For vertical motion, the simulator receives an arbitrary function which simulates 
arbitrary physical constraints and control inputs. As an example, we generated a trajectory with a profile 
function designed to follow a more realistic HGV trajectory. Using a proportional control system, this 
function simply pitched up or down to keep the trajectory aligned with the example as shown in Figure 4. 

 

Figure 4. Profile function following an example HGV flight path  
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We believe that given more time and effort, this simulation could be extended to provide insight into 
flight vehicle design using flight test data. Incorporating realistic physics, we would allow unknown 
design parameters, such as force and moment coefficients, to vary. Then, a gradient-descent algorithm 
would iteratively simulate the trajectory until a parameter set is found that causes the simulation to best 
represent of the flight data. As an example of this process Figure 5 shows the use of this approach to 
determine the approximate energy delivery of a launch vehicle. The profile function follows the recorded 
launch and applies a constant thrust, then varies thrust to weight ratio and physically simulates the free-
fall phase in order to determine the correct energy delivery by the Launch Vehicle. 

Finally, it is also necessary to simulate the target’s attitude in order to determine the RADAR cross 
section. In the great circle case, we simply align the vehicle x axis with its velocity, and the z axis with its 
position. In the general case, the attitude is fully described by three angles which are closely related to the 
trajectory—The angles of attack, sideslip, and roll. By making the assumption of coordinated flight—the 
acceleration vector is perpendicular to the wing span—we fix the sideslip angle to zero, and the roll angle 
centers the acceleration vector in the vehicle coordinate system. We then use an aerodynamic 
parameter—the lift curve slope—to determine the angle of attack. In both cases, the attitude is stored as a 
3x3 rotation matrix. Multiplication of the unit vector pointing to the satellite by this matrix yields the 
view vector in the target’s frame of reference, which determines the RCS.  

 

Figure 5. Optimization of LV thrust-to-weight ratio 
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 Signal Simulation 

Before we can evaluate the tracking capability of a given system, we must translate the geometric 
simulation, signal processing, and RADAR cross section analyses into a realistic list of measurements. 
First, we simulate the whole scenario to 1 second resolution and identify times when each satellite or pair 
of satellites is within a pre-determined range. This gives us a list of time intervals with corresponding 
satellite indices to search, which we refer to as links. Second, we translate those links into a list of 
measurements. Fundamentally, this process consists of an integration of the well-known RADAR power 
equation modified for the bi-static case: 

𝑃! =
𝑃"𝐺"𝐺!𝜆#𝜎
(4𝜋)$𝑅"#𝑅!#

	 

3 

The transmit power and wavelength, and the gains of the transmitter and receiver antennas (𝑃#,	𝜆, 𝐺# , and 
𝐺$) are input parameters affecting the design of the constellation and individual spacecraft which we may 
vary with the goal of optimizing our system. We determine the remaining variables at each instant in time 
using the RCS and geometric simulation outputs. The required signal integration time, and thus the 
interval timing of the measurements, is the time required to acquire enough signal energy such that the 
SNR is sufficient for target identification. Thus, integration time is also a function of the instantaneous 
ranges and vehicle attitude. For slowly varying 𝑃$ , the integration time is determined simply by equation 
4. 

𝑡% =
𝐾&𝑇
𝑃$

𝑆𝑁𝑅'($)*# 
4 

However, recall that at reasonable signal power and gain levels, integration on the order of 2 s may be 
required. Over this time, with sensors moving at 7 km/s tracking a target with a varying cross section, the 
received power level may vary widely. Our integration time then becomes the minimum 𝑡% that satisfies 
equation 5. (Note: there are other terms in this relation that are dependent on our handling of acceleration 
effects) 

c 𝑃$
#%

+
≥ 𝑆𝑁𝑅#($)*#𝐾&𝑇 

5 

To determine the measurement times, we set up an initial value problem which keeps track of the total 
received signal energy over the course of each link as well as the total integrated acceleration error. The 
IVP solver calls a derivative function which incorporates the physics and geometry of the problem. The 
derivative function calculates the continuous position and velocity of the satellites involved in the link, 
and the position, velocity and orientation of the target. From these values it determines the angle –
dependent RCS, received power, and acceleration error. We also built In a side-effect to this function that 
creates a list of measurement values every time it is called in a state that allows a new measurement. 
Measurements are then fed into any live tracking algorithms that inform the acceleration estimation, or 
saved for use in the full tracking solution. 

 Tracking Parameters 

The product of the signal processing module on any given satellite is the signal delay and Doppler shift. 
From these we determine the range to target, 𝑅, and its rate of change, �̇�. An understanding of the effect 
of scene geometry on these variables informs the signal processing to extract the maximum available 
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information from the signal. Noticing that the bi-static values for 𝑅, and  �̇� are simply the sum of those 
mono-static quantities for the two satellites involved, we can characterize the effect of the vector 
positions, velocities, and accelerations on the mono-static case only to gain insight on all of the signals of 
interest. First, the relative range is defined by (equation 6). 

𝑅 = |𝑅O⃑ # − 𝑅O⃑ ,(#| 
6 

From here on, we will drop the subscripts, set the satellite location as the origin, and represent the vector 
velocity and acceleration by their initials such that	𝑅O⃑ # − 𝑅O⃑ ,(# = 𝑅O⃑ , 𝑅O⃑ ̇# − 𝑅O⃑

̇
,(# = 𝑉O⃑ , and 𝑅O⃑ ̈# − 𝑅O⃑

̈
,(# = 𝐴. 

We show range and its derivatives in equation set 7 
𝑅 = i𝑅O⃑ i 

�̇� =
𝑅O⃑ ⋅ 𝑉O⃑
𝑅

 

�̈� =
𝑉O⃑ ⋅ 𝑉O⃑ + 𝑅O⃑ ⋅ 𝐴

𝑅
−
l𝑅O⃑ ⋅ 𝑉O⃑ m

!

𝑅-
 

7 

A geometric understanding of the range derivatives aids our intuition on the signal effects.  �̇� is easily 
understood as the projection of velocity onto the position vector as shown in Figure 6 

 

Figure 6. Geometric Interpretation of  �̇� 

Geometric representation of �̈� is more complicated and benefits from re-forming the equation to extract 
some more familiar quantities. The first terms in equations 8-10 are familiar as the projection of 𝐴 onto 𝑅O⃑  
as before, but the second term merits more analysis. Noticing from the Pythagorean Theorem and from 
Figure 2 that second term of equation 8 is the square of the perpendicular component of 𝑉O⃑  to	𝑅O⃑  (Figure 7), 
we recognize this term as being related to the instantaneous rotation rate of 𝑅O⃑ . By expressing it as a cross 
product (9) and substituting  𝜔OO⃑ ./⃑ =

./⃑ ×2//⃑
.&

 (10), we reveal the second term as the centrifugal acceleration 
due to the rotation of the position vector. 
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�̈� =
𝑅O⃑ ⋅ 𝐴
𝑅

+
1
𝑅
(𝑉! − �̇�!) 

8 

�̈� =
𝑅O⃑ ⋅ 𝐴
𝑅

+ n
𝑅O⃑ × 𝑉O⃑
𝑅!

× 𝑉O⃑ 	n 

9 

�̈� =
𝑅O⃑ ⋅ 𝐴
𝑅

+ i𝜔OO⃑ ./⃑ × 𝑉O⃑ 	i 
10 

 

Figure 7: Geometric Interpretation of  �̈� 

Any unknown portion of  �̈� that is not accounted for when integrating the signal causes smearing of the 
ambiguity function as described in the signal-to-noise section. So our objective is to estimate this quantity 
with as much accuracy as possible when performing the integration. If we assume the receiver has no 
knowledge of the current target position and velocity, we must define �̈�*,# solely with respect to the 
coordinates of the ambiguity function. We cannot predict the direction of acceleration with any certainty, 
so we are limited to making an educated guess about the centrifugal acceleration and correcting only for 
that. Since the direction of the target velocity is uniformly distributed, the average satellite-relative speed 
is equal to the speed of the satellite. Therefore, in the case where the receiver has no prior information 
regarding target position and velocity, the best estimate of  �̈� is given by equation 11. 

�̈�*,#l𝑅, �̇�m =
𝑣3! − �̇�!

𝑅
 

11 
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Of course, it is not always true that the receiver has no information on the position and velocity of the 
target. We assume the system will be given some sort of “tip-off” fix at which to begin a search, and after 
initial acquisition, each receiver will have some amount of data regarding the most recent fixes. If the 
satellites are allowed live cross-links, receivers may even have access to the entire live tracking solution. 
In either case, the estimate of centrifugal acceleration is created using the relative velocity of the target at 
the most recent fix. 

The possible need for  �̈� correction thus requires us to evaluate the following 4 scenarios of system 
architecture. In increasing order of complexity: 

1. No live tracking, no estimation of  �̈� 
2. No live tracking,  �̈�*,# is calculated as in equation 11. 
3. Each satellite keeps its own tracking record, using only links it was involved in. 
4. The whole constellation is live cross-linked giving each receiver knowledge of the full solution. 

The impact of geometric acceleration in terms of system requirements is outlined in the signal-to-noise 
section of this report 
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 Radar Cross Section 
 Introduction 

RCS refers to ‘radar cross section’ of an object. This is an important parameter to calculate scattered 
power coming from a target when the target is illuminated by a plane wave at the far-field range. The 
RCS parameter is usually denoted as 𝜎 and defined as [[4]:  

𝜎 = 	 lim	 4πr!
"→$

|𝐸%|!

|𝐸&|!  
12 

Where, 𝐸% refer to incident field on the object and 𝐸, refer to scattered field coming from the object. 
From the definition of RCS, it is obvious that 𝜎 is a power parameter and expressed as area (𝑚!). 
Usually, it is expressed in dBSm or dB (𝜎4&,5 = 𝜎4& = 10 log6+ 𝜎) as a ratio to 1𝑚! cross-section area 
of an object. 

RCS, in general quantifies the visibility of the target. The better the scattered signal from a target, the 
larger the RCS is. Since it provides an estimation of target area in the far-field, it is an important element 
to calculate signal-to-noise ratio (SNR) for receiver systems, contributing to link-budgeting. The classic 
Radar Range equation is [5]: 

𝑃" = 𝑃'
𝐺'𝐺"𝜆!𝝈
(4𝜋)(𝑅'!𝑅"!

 

13 

RCS can be monostatic, bi-static or multi-static, depending on the location of transmitter (Tx) and 
receiver (Rx) , as shown in Fig. 1. When	𝛼 ≠ 0, the system is at-least a bistatic system, separating Tx and 
Rx. However, when	𝛼 = 0, the system becomes mono-static, merging receiver and transmitter location 
into a single line.   

 

Figure 8. Bi-static radar system for	𝛼 ≠ 0, separating transmitter and receiver. The system 
converges to mono-static when	𝛼 = 0. If multiple transmitters (Tx) and receivers (Rx) 
are present, the system becomes multi-static. 

RCS of a target is usually measured in far-fields. Therefore, it location parameters are chosen as 𝜃 and	𝜙, 
in spherical co-ordinates, where the target is assumed to be at the center of the sphere.  For a bi-static 
case, 𝜎 depends on several parameters:  

1. Location of the target: 𝜃# , 𝜙# , 𝜃$ , 𝜙$, where the subscripts ‘𝑡’ and ‘𝑟’ refers to ‘transmitter’ and 
‘receiver’ respectively 
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2.  Scattering processes such as reflection, refraction, diffraction, creeping-waves etc. 
3. Material content of the target: metallic, dielectric, absorbing materials, plasma etc. 

In this project, the main goal is to model RCS parameter for Hypersonic Glide Vehicle (HGV), which are 
assumed to be metallic. The idea is to model multi-static RCS parameters using bi-static analysis of RCS 
in various locations and develop a multi-static software suite for accurate prediction of the target.  We 
divided the RCS analysis in two broad sections: 1) First, we will discuss briefly about frequency 
dependence, different scattering processes and associated numerical methods in analyzing RCS. Second, 
we will summarize the RCS calculation adopted for HGV model and post processing of polarization 
dependent RCS data for any arbitrary pair of transmitter (Tx) and receiver (Rx).  

 Brief Discussion on RCS Scattering 

  Frequency dependence  

The scattered field coming from an object is heavily dependent on the frequency of the incoming signal. 
The scattered power depends mostly on the ratio (𝑑/𝜆) [6], where 𝑑 refers to largest dimension of the 
object and 𝜆 depends on the wavelength of the incident signal. This is shown in Fig. 2. 

 

Figure 9. (a) Wavelength (Frequency) dependence in RCS. Three region is shown as a function 
of 𝑑/𝜆. (b) Wavelength dependence of RCS of sphere is shown. In physical optics, 𝜎 =
𝜋𝑎! for optical region, i.e. a constant. For Rayleigh and Mie region, this is not true.  

As seen in Figure 9, RCS of a sphere is a function of wavelength (frequency) for ratio (!(
7
≤ 1). In 

Rayleigh region, 𝜎 varies linearly with wavelength until it hits Mie (resonance) region where 𝜎 fluctuates 
(resonates) a lot. In Mie region, which can be true for	1 ≤ 	 4

7
≤ 10, 𝜎 varies significantly, making it very 

unreliable for analysis. Typically, for any object, the far-field RCS (optical-region) value is independent 
of frequency. For our analysis, we chose 6.9GHz as our frequency of interests, in optical-region.  

 Scattering Processes 

Signals scattered from a target may be represented by a power quantity, however, the received signal may 
be consequence of several complex physical processes. This can be shown in Figure 10. We will 
summarize briefly several scattering processes commonly seen and modeled in RCS analysis: 

2𝜋𝑎/𝜆 

𝜎(
𝑚
! )

 2𝑎
 

(b) 

2𝑎 < 𝜆 2𝑎 ≈ 𝜆 2𝑎 ≫ 𝜆 
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Figure 10. (left) Scattering of signal shown in typical aircrafts (Courtesy: NASA) [7]. (Right) 
Different scattering processes are shown in cartoon for a large sphere. The creeping 
wave contributes to signal received by a receiver located in the shadow region (right). 

1. Specular Reflection: This is regular reflection from a surface. It follows typical law of optical 
reflection. This process contributes to the significant portion of scattered power coming from a 
target.  
2. Diffraction: Diffraction is the second large contributor to scattered signal. Diffraction is very 
complicated processes and difficult to analyze. Typically, when there is an edge or any end of 
boundary encountered, field becomes infinity at sharp edges/corners and diffraction is observed 
(edge/cone diffraction). Also, there can be diffracted signal in shadow region if a smooth surface 
with minimal roughness is encountered (creeping wave/ smooth diffraction). We observed 
diffracted signal in shadow region for smooth objects such as sphere, cylinder etc. in numerical 
analysis.  
3. Surface Waves: Whenever there is a discontinuity in the constituent material of the target, an 
induced current (surface wave) is introduced which radiates incoherently at far-field. This 
surface wave contribution is mostly noise-like and does not contribute significantly in the signal.   
4. Multi-reflection from target: If the target is made of composite materials that contain 
dielectrics or other transparent materials, incident wave can penetrate through the surface and 
then leak to other part so of the body, radiating in space. This is multi-bounce reflection. Often, 
cavity features as shown in Fig. 3 can also contribute to multi-bounce signal and energy fading. 
These are greatly handled numerically by Shooting and Bouncing Rays (SBR) method. We will 
explain that later.  

  Numerical Methods 

RCS analysis is purely numerical in a sense that except some regular geometrical shape, there is no 
concrete analytic formula to determine RCS for arbitrary-shaped object. In electromagnetic analysis 
perspective, there are two ways to analyze RCS: 1) Exact method 2) Approximate method [8]. In Exact 
method, RCS of a target can accurately be simulated by solving Maxwell’s equations in the domain of 
interest and then determine scattered fields. This is the most accurate way but may not be practical due to 
restriction of computational time, resource and cost. Another method is approximate method that analyzes 
RCS at reasonable accuracy with limited resources. While approximate methods are not necessarily 100% 
accurate, they can provide a good trade-off between level of accuracy and computational labor. Below, 
we will go through brief description of some common methods we went through our analysis.  
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1. Finite-Difference Time-Domain (FDTD): This method solves Maxwell’s equation in differential 
form, by discretizing the equation in time-domain and solve those using appropriate boundary 
conditions [8]. FDTD is considerably faster method and calculates RCS for any composite type 
materials by solving exact fields inside the domain.  
2. Method of Moments (MoM): This method is very accurate and popular for Perfect Electric 
Conductor (PEC) type material. In this method, Maxwell’s equations in integral form are used to 
determine exact currents. This is usually done by discretizing the surface of the object into 
small-size (𝜆/10) patches. It uses basis functions to expand these currents and uses linear 
algebra to determine exact currents [4,[8].  These currents are then used in radiation integral to 
determine the radiated scattered field and RCS. 
3. Physical Optics (PO): In this method, the object is discretized to tangent planes, which do not 
necessarily coincide with body material. It solves Stratton-Chu integral equation to solve 
scattered field in far-field region [8]. It is an approximate method that works very well for planar 
geometries, but fails to predict RCS accurately for curved and complex features.  
4. Geometric Optics (GO): It is an approximate method that utilizes geometric ray tracing to find 
reflection from the target. It approximates vanishing current except from the specular point. 
This method falls off for flat surfaces and infinitely long radius of curvature.  
5. Shooting and Bouncing Ray Method (SBR): It is a ray tracing method where the scattered field 
determined from an open scatterer. Rays that mimic incident plane wave are impinged upon the 
target and then traced from the target to an exit aperture [8[10]. This method utilized both GO 
and PO method.  Electric field is traced within the rays with Geometric Optic (GO) rules. This is 
an approximate method that can simulate electrically large object with greater specular 
reflection [[8[10].   

  Our Choice of Analysis 

In our study, we assumed our HGV model as PEC based. Therefore, MoM is the best method for 
obtaining exact solutions [4]. We used CST Microwave Studio (CSTMWS) [11] as our 
electromagnetic/RF simulation suite for analyzing RCS numerically. In this suite, a hybrid of MoM 
method known as ‘Multilevel Fast Multi-Pole Method’ (MLFMM) is used to simulate exact RCS analysis 
for metallic objects [9] . The solver that used this method is called Integral Equation (IE) solver. 
MLMFMM differs from MoM in that it  groups  the  basic  functions  and  calculates  the  interaction  
between  these  groups.  Through this modification, this approach can handle electrically large problems 
with dramatically faster results than MoM. We used this method to get an exact solution of our problem 
for certain set of angles. This method was used to obtain a benchmark data for our analysis. Since our 
HGV model is electrically very large, we adopted SBR method in CSTMWS to simulate mostly specular 
reflection from the target. Below, we will provide details on our numerical analysis of HGV RCS 
modeling.  

 Numerical Analysis of RCS for HGV Model 

 Validation of Simulation Process 

We started our numerical analysis by validating our simulation first using IE solver. This was done by 
comparing our results to analytic formula provided by physical optics (PO) approximation. We used 
simple shapes such as spheres, circular disc and flat plate to validate our simulation. The numerical results 
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are given in Figures Figure 11-Figure 13.We mostly compared monostatic RCS data since most of the 
analytic results are provided in Monostatic form.  

 

Figure 11. RCS simulation data from IE solver for circular disc of radius 45.7cm. Analytic formula 
is also given to compare the result. 𝑘/⃗  and 𝑒	denotes direction of propagation and 
electric field respectively [4]. 

 

Figure 12. RCS simulation data from IE solver for flat plate: a = b =10.16cm. Analytic formula is 
also given to compare the result. 𝑘/⃗  and 𝑒	denotes direction of propagation and electric 
field respectively [7]. 
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Figure 13. RCS simulation data from IE solver for sphere of radius 5cm. Analytic formula is also 
given to compare the result. 𝑘/⃗  and 𝑒	denotes direction of propagation and electric field 
respectively. It is obvious that RCS is constant for sphere.  
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 RCS Comparison Analysis of NASA RAM C-III Vehicle 

One of the most well-known example of re-entrant flight vehicle is NASA RAM (Radio Attenuation 
Measurement) C-III. The reason we chose this in our analysis is twofold: 1) the dimension of this vehicle 
is known 2) The vehicle is a complex geometry constituting of common features such as disc, half-sphere 
(dome) and conical cylinder. Although we do not have RCS data for RAM C-III, the modeling of RAM 
C-III would give us idea about amount of reflected signal as a function of angles. We modeled the RAM 
C-III as shown in Figure 14. Then we broke down the features if RAM C-III into different common 
geometric shape (e.g. disc, conical cylinder, and sphere) for certain angular incidence. The RCS 
comparison results are shown in Figure 15. As shown, the simulated results for discreet features such as 
sphere, disc, conical cylinder matches with RAM C-III results with reasonable accuracy (i.e. in terms of 
profile, trend and value in certain angle ranges (80° ≤ 𝜃 ≤ 180°)). However, the deviation in results was 
found mostly between simulated RAM C-III data and analytic data for conical cylinders. The analytic plot 
was based on PO-based approximation method and it can be concluded that PO method fails to capture 
reasonable amount of scattered signal for curved surfaces such as conical cylinder and RAM C-III. The 
result also shows that in mono-static case, the specular reflection is pretty dominant in these type of 
vehicles even if the surface is smooth. These things have been considered later in analysis of HGV model.  

 
Figure 14. (Left) CSTMWS model of NASA RAM C-III Vehicle. The dimensions are: 𝑅' = 15.54𝑐𝑚, 𝐿 = 129.5𝑐𝑚, 𝛼 = 9°, 𝑅( =
33.53𝑐𝑚. (Right) Breakdown of RAM C-III vehicle into three simple shapes  

 
Figure 15. Comparison of monostatic RCS data between simulated RAM C-III and analytic models and simulated models. RAM C-
III data matches reasonable with conical cylinder data for broad range of angles but fails to match considerably with PO 
approximation. The sphere and disc represent analytic model data as shown above 
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 HGV Model 

After validating our simulation model, for RCS analysis, we modeled our own HGV that mimic a HGV 
published in literature [].  The model utilizes basic dimension parameters such as maximum length, cone 
angle and butt-length, as shown in Figure 16. The 𝑑/𝜆 ratio for maximum length is 84.41, which makes it 
electrically large RCS problem.     

 

Figure 16 (Left) HGV model for our analysis that follows an existing HGV model (Right)  

 RCS Analysis of HGV Model 

Before we would proceed with overall RCS analysis of the HGV for all possible angles, we wanted to 
determine average simulation time per bistatic pair of angles so that we can predict the total simulation 
time for our study. The required bi-static pair of angles that should accurately predict multi-static model 
of the RCS for our problem was identified as 254k pairs, where 10° resolution was considered to be 
enough to provide sufficient data for accurate interpolation of RCS in intermediate angles (within 10° 
resolution). For this huge number of bi-static angle pairs, it is necessary to determine which 
computational method is efficient to provide us RCS data with reasonable accuracy. Since HGV model is 
assumed to be fully metallic (PEC) and also electrically large (4

7
= 84.41), we short-listed two solvers to 

compare time and accuracy. One is IE solver that uses MLFMM. This is our benchmark process that is 
proved to provide accurate results with error margin less than 1% (Figures Figure 11Figure 13). The other 
one is Asymptotic Solver (AS) that uses SBR method which is very common in simulating electrically 
large problems with reasonable accuracy.  Before we compare two solvers, a convergence study was 
conducted for IE solver since it is the reference solver for our analysis. We discretized the surface mesh 
size into two different lengths (𝜆/10	and	𝜆/15). Then we compared the results side by side. For 
convenience of our analysis, we choose a set of angles (𝜃 = 90°, 𝜙 = 270°	) where the geometric feature 
is easily comprehensible. The physical features visible in this angle include a triangle and a rectangle 
(Fig. 10). The total physical area for this surface is 4.154𝑚!. According to the physical optics 
approximation, the monostatic RCS from normal incidence of an area of 𝐴8 is 𝜎 ≈ 9:;)&

7&
.  
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Figure 17. HGV model file simulated only in X-Y plane (𝜃 = 90°, 𝜙 = 270°). The flat view of the 
HGV has a triangle and rectangle feature on it.  

 

Figure 18. Monostatic and bistatic data for HGV vehicle, 𝜃" = 90°, 𝜙" = 270°, 𝜃# = 90°, RCS is 
plotted against 𝜙#. In bistatic case, specular reflection is maximum for 𝜙# = 90°, which 
is seen in shadow region. 

The total physical area, 𝐴8 is	4.154𝑚!, when looking at 𝜃 = 90°, 𝜙 = 270°. Therefore, theoretically 
predicted monostatic RCS is 50.59𝑑𝐵𝑠𝑚 which is close to simulated one (52𝑑𝐵) (Figure 18). The bi-
static results also matches with less than 1% error. It is important to note that the mesh size 𝜆/10 provides 
almost similar accuracy compared to 𝜆/15 meshes. Therefore, we stick to 𝜆/10 for comparison to AS 
solver results. A comparison between two different mesh cases and solver time is shown in Table 1. 
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Table 1.  RCS Simulation Stats 

	
Solver Integral Equation Solver Integral Equation Solver 

Max cell size 𝜆/5 𝜆/10 

Number of mesh cells 0.416M 1.309M 

Simulated angles (𝜃 = 90°, 	𝜙 = 0°	𝑡𝑜	360°) (𝜃 = 90°, 	𝜙 = 0°	𝑡𝑜	360°) 

Solver time 61.5h 130.5h 

Solver time per angle 10.25m 21.75m 

	

As shown, simulation time takes longer due to its exact nature of the solution. While the mesh number 
increases almost 3 folds by reducing mesh size, the accuracy remains almost same, implying the mesh is 
converged for 𝜆/10. 

Next, we compared results between two solvers (between IE and AS solvers) in Figure 19 for similar 
scenario. As seen, the data matches in considerable accuracy for most of the range of 𝜙$. 

 

Figure 19. Comparison of IE and AS solver results for similar case as shown in Figure 17. The 
simulation data represents X-Y plane only. The results match with excellent accuracy in 
all regions except 120° < 	𝜙# < 150°, 50° < 	𝜙# < 70° where the fluctuation can be 
attributed to relying on specular reflection process for those angles. The fluctuation is 
maximum 5dB which can be minimized by post-processing of the data since the trend 
is same.  The result also followed theoretically predicted data ≈ 51𝑑𝐵 at the peak.	

We also considered X-Z plane for simulation so that the results are in considerable accuracy. This is shown 
in Fig. 13. Although there are several locations where the AS solver data differ from IE solver data, there 
general trend is similar. The deviation can be attributed to couple of factors [9]: 1) IE solver is exact whereas 
AS is approximate, 2) IE solver includes other scattering processes such as diffraction, surface waves, 
where AS solver relies mainly on specular reflection [9]. 
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Figure 20. Comparison of IE and AS solver results for similar case as shown in Fig. 10. The 
simulation data represents X-Y plane only. As seen in the plot the maximum reflection 
observed in AS solver at	𝜃# = 135°, 90° apart from transmitter angle, 𝜃" = 45°. This is a 
simple verification of specular reflection. This follows general optical law of reflection. 	

The objective of this study was to compare simulation time between two solvers. The results are shown in 
Table 2 

Table 2. RCS Simulation Stats 

Solver Integral Equation Solver Asymptotic Solver 

Max cell size 𝜆/10 N/A 

Number of mesh cells 1.61M 21038	𝑠𝑢𝑟𝑓𝑎𝑐𝑒𝑠 

Simulated angles (𝜃" = 90°, 	𝜙" = 270°, 	𝜙# = 90°, 	𝜃# = 90°, 	𝜙# = 0	𝑡𝑜	360°) 
(𝜃" = 45°, 	𝜙" = 90°, 	𝜙# = 90°, 	𝜃# = 0	𝑡𝑜	90°) 

Solver time 47.5h (180 angles) 2.25m ((180 angles)) 

Solver time per angle ~16m 0.75s 

Table 2 shows that AS solver reduces simulation time dramatically from 16 minutes to only ¾ seconds. 
This is a reasonable approach to analyze 250𝑘 RCS pair of angles within reasonable accuracy. Also, our 
basic assumption is that most of the signals coming from or captured by satellites would be specular in 
nature, therefore AS solver seems a promising solution analyzing the data. The simulated RCS data for 
the HGV model is stored in the repository in file name titled: 
“RCSdata_S_data_lin_pol_lin_format.xlsx”.  

 Polarization Dependence and Post-Processing of RCS data:  

The RCS simulation was conducted using CSTMWS [11], for two orthogonal basis of incident electric 
field: 1)  𝐸<

%  and 2) 𝐸=%  i.e. we simulated and tabulated scattered field for each incident field and stored 
them together in the repository file. This is due to the fact that polarization affects scattered power from a 
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target significantly. For example, a purely 𝜃-polarized ( i.e. 𝐸<
% ) incident field can scatter waves which 

can have both 𝜃 and 𝜙 components i.e. 𝐸<
, and 𝐸=, . Hence, RCS analysis can be imagined as two-port 

network. This can be represented as the following equation [7[13[14]: 

4
𝐸	*%

𝐸+%
5 = 6

𝑆** 𝑆*+
𝑆+* 𝑆++

8 4
𝐸*&

	𝐸+&
5 
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Where S-parameters are in complex form, i.e. having both magnitude and phase. The RCS is related to 
this S-matrix using the following relation:  

9
𝜎** 𝜎*+
𝜎+* 𝜎++ : = 4𝜋𝑟! <

=𝑆**=
! =𝑆*+=

!

=𝑆+*=
! |𝑆++|!

> 

15 

We simulated all the S-parameter elements (𝑆<< , 𝑆<= , 𝑆=< , 𝑆==) for each pair of angles. This data is a 
basis for any combination of transmitter and receiver antenna polarizations. For example, if the 
transmitter and receiver antenna are both from circular polarization, then this matrix can be used to 
convert the linear-polarization basis to circular polarization using the following unitary transformation: 

𝑆, = 6𝑆-- 𝑆-.
𝑆.- 𝑆..

8 = [𝑇] 6
𝑆** 𝑆*+
𝑆+* 𝑆++

8 91 0
0 −1:

[𝑇]/0 

Where 𝑇 = 0
√!
61 −𝑗
1 𝑗 8 

16 

‘R’ represents Right-handed circular polarization (RHCP) and ‘L’ represents left-handed circular 
polarization (LHCP). The matrix [1 0

0 −1] is used here to compensate for the propagation direction of 
transmitted and received plane wave into unitary transformation [15]. This is shown in radar cross section 
appendix. However, for any arbitrary polarization of transmitter and receiver, the unitary transformation 
can be quite complex. For our analysis, we chose linear components such as 𝐸< and 𝐸= as basis of 
transformation [4[5]. We preferred to represent any polarization (Tx or Rx) of wave as linear combination 
of these two components. Typically, polarization of a wave is represented as coordinates of a fictitious 
sphere, called Poincaré Sphere [4]. We also followed this standard convention in our analysis.  To 
elaborate this, we refer to Poincaré Sphere as shown in Figure 21.  
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Figure 21. Poincaré Sphere as shown in [4]. Any polarization of a wave can be represented using 
its polarization state 𝑃(𝛾, 𝛿) or 𝑃(𝜖, 𝜏). (a) Definitions of coordinates/states are shown 
(b) location of states for different states are shown.  

The polarization of a wave can be represented by longitude (2𝜏) and latitude angle (2𝜖) in the Poincaré 
Sphere [4]. Unit vector of electric field of any arbitrary polarization can be represented as: 

𝐸z = 𝑎𝐸={ + 𝑏	𝐸<{𝑒>∠@ 
17 

From conversion relation of longitude and latitude angles to (𝛾, 𝜏) , 𝐸O⃗ 	can be represented as linear 
combination of , 𝐸<OOOO⃗  and , 𝐸=OOOOO⃗ . The conversion relations are [4]: 

𝛾 = tanA6
𝑏
𝑎
, 𝛿 = ∠𝜃 − ∠𝜙		 

 sin(2𝜖) = sin 2𝛾 sin 𝛿 
sin(2𝜏) = tan 2𝛾 cos 𝛿 

18 

For any given set of (𝜖, 𝜏), using the above relations, 𝑎, 𝑏 and 𝛿 can be derived. For example, for circular 
polarization, 𝑎 = 𝑏 = 1, 𝛿 = ± :

!
. For convenience of our analysis, we chose 𝑎 = 1 and then used 𝛾 to 

calculate	𝑏. We developed a python code that uses these inputs and above equations and converts any 
arbitrary polarization (linear, circular or elliptical) into a linear combination of vectors with appropriate 
phase (𝛿# , 𝛿$) and magnitudes	𝑎# , 𝑏# , 𝑎$ , 𝑏$. Next, a unitary transformation of basis for different set of 
polarizations can be mathematically formulated to obtain RCS for arbitrary polarization of transmitter and 
receiver: 

𝜎(𝜃' , 𝜙' , 𝜃" , 𝜙" , 𝜖' , 𝜏' , 𝜖" , 𝜏") =
1
𝐴
[𝑎' 𝑏'𝑒23$] <

|𝑆++|! =𝑆+*=
!

=𝑆*+=
! =𝑆**=

!> 9
1 0
0 −1: [

𝑎"
𝑏"4%&'

] 
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𝐴 =
1

O𝑎'! + 𝑏'!
1

O𝑎"! + 𝑏"!
 

19 

Here subscripts, ‘t’ and ‘r’ refers to transmitter and receiver respectively.  𝐴 is the scale factor for the 
transformation.  We used this transformation for each set of Tx and Rx pair of angles i.e. (𝜃# , 𝜙# , 𝜃$ , 𝜙$).  
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 Radar Cross Section Appendix 

For any set of transmitter and receiver angles (𝜃# , 𝜙# , 𝜃$ , 𝜙$), the bistatic scattering matrix of a radar 
system can be represented by a 2 × 2 matrix. This is due to polarization dependent scattering from the 
surface of an object. For example, the scattered wave from an incident 𝜃-polarized wave can have two 
orthogonal components i.e. 𝐸< and 𝐸=. Therefore, any scattered wave can be characterized by two 
orthogonal basis i.e. (𝜃, 𝜙) or (RHCP, LHCP) or (𝑎∥� , 𝑎C�). For now, we show the transformation in 
circular polarization basis. Any circular polarized wave can be represented using two orthogonal 
component of linear basis	(𝐸< , 𝐸=), whose amplitude are equal and phase shifted by 90°. Using the 
notation mentioned in the chapter, arbitrary polarized can be written: 

𝐸z = 𝑎𝑒>∠@ 	𝐸<{ + 𝑏𝐸={  
20 

For circular polarization, 𝑎 = 𝑏 = 1 and	𝛿	 = 	±	:
!
. If the wave is RHCP, 𝛿 = − :

!
 and if the wave is 

LHCP, 𝛿 = + :
!
.  Hence, the unit vector of electric field of a RHCP wave can be written as the following 

linear equation: 

    	
𝐸.{ = 𝐸={ − 𝑗𝐸<{ 

21 

Similarly for LHCP 

𝐸D{ = 𝐸={ + 𝑗𝐸<{ 
22 

�𝐸.𝐸D
� =

1
√2

�1 −𝑗
1 𝑗 � �

𝐸=
𝐸<
� = [𝑇] �

𝐸=
𝐸<
� 

23 

where [𝑇] = 6
√!
�1 −𝑗
1 𝑗 � is the basis transformation matrix. By transforming the column-matrices, 

(𝐸< , 𝐸=) can represented using	(𝐸. , 𝐸D): 

�
𝐸=
𝐸<
� =

1
√2

�1 1
𝑗 −𝑗� �

𝐸.
𝐸D
� = [𝑇]A6 �𝐸.𝐸D

� 

24 

Now, for standard scattering matrix algebra can be shown in following equations: 

[𝑇]A6 �
𝐸.,

𝐸D,
� = �

𝑆𝜙𝜙 𝑆𝜙𝜃
𝑆𝜃𝜙 𝑆𝜃𝜃

� [𝑇]A6 �
𝐸.%

𝐸D%
� 

25 

The matrix �1 0
0 −1� is included in unitary transformation to make general reference for transmitting and 

receiving wave. Typically, the polarization of any wave is represented as if all wave are in transmitting 
mode.  

�
𝐸.,

𝐸D,
� = [𝑇] �

𝑆𝜙𝜙 𝑆𝜙𝜃
𝑆𝜃𝜙 𝑆𝜃𝜃

� �1 0
0 −1� [𝑇]

A6 �
𝐸.%

𝐸D%
� 

26 
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Using definition of scattering matrix for circular polarization,  

�
𝐸.,

𝐸D,
� = �𝑆.. 𝑆.D

𝑆D. 𝑆DD
� �
𝐸.%

𝐸D%
� 

27 

Then,  

�𝑆.. 𝑆.D
𝑆D. 𝑆DD

� = [𝑇] �
𝑆𝜙𝜙 𝑆𝜙𝜃
𝑆𝜃𝜙 𝑆𝜃𝜃

� �1 0
0 −1� [𝑇]

A6 

28 

 The resultant matrix is the transformation matrix for circular polarization basis. Now, if the transmitting 
and receiving wave are RHCP and LHCP respectively. The scattered power from the target is 𝑆D., which 
can be found from the following unitary transformation: 

𝑆D. =
1
2
[1 𝑗] �

𝑆𝜙𝜙 𝑆𝜙𝜃
𝑆𝜃𝜙 𝑆𝜃𝜃

� �1 0
0 −1� [

1
−𝑗] 

29 

The algebraic expressions for all the transformation is given below: 

𝑆.. 	 =
1
2
(𝑆𝜙𝜙 + 𝑆<<) −

1
2
𝑗(𝑆<= − 𝑆=<) 

30 

𝑆.D =
1
2
(𝑆𝜙𝜙 − 𝑆<<) −

1
2
𝑗(𝑆=< + 𝑆<=) 

31 

𝑆D. =
1
2
(𝑆𝜙𝜙 − 𝑆<<) +

1
2
𝑗(𝑆=< + 𝑆<=) 

32 

𝑆DD =
1
2
(𝑆𝜙𝜙 + 𝑆<<) −

1
2
𝑗(𝑆=< − 𝑆<=) 

33 

As seen, 𝑆.. and 𝑆DD are expected to become larger in magnitude compared to 𝑆.D and	𝑆D.. This is due to 
the fact that scattered signal from metallic targets typically do not change polarization (i.e.	𝑆<= and 𝑆=< 
are smaller compared to 𝑆<< and	𝑆==). This has been also observed in numerical analysis. 
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 Signal to Noise 
We have studied the radar link budget and determined under what conditions the signal received by the 
receiver can support a determination of range and Doppler for the extended Kalman filter tracking engine 
described in the following section. In general a coherent signal is integrated over time to bring the 
integrated signal amplitude to a level sufficiently over the noise. We refer to this equivalently as a high 
enough SNR or a high enough 𝐸F/𝑁+, where 𝐸F is the energy in the waveform and 𝑁+ = 𝑓𝑘G𝑇$ is the 
noise power spectral density, also an energy, and where 𝑓 is the receiver’s noise figure,	𝑘G is Boltzmann’s 
constant and 𝑇$ is the receiver temperature. The received power is of the form  

𝑃" = 	𝑃'	𝜎
𝐴789!

4𝜋𝜆!𝑅'!𝑅"!
𝜂 

34 

where 𝑃# is the transmitted power, 𝜎 is the flight vehicle’s radar cross section, 𝐴8HI is the area of the 
transmit and receive antennas, 𝜆 is the RF carrier frequency wavelength, 𝑅# and 𝑅$ are the distances from 
the flight vehicle to the transmitter and receiver, respectively, and various inefficiencies (air attenuation, 
antenna loss, etc.) are incorporated in 𝜂.  The ratio of energy in a single transmitted bit of the signal over 
the noise power spectral density is 

𝐸:
𝑁;

=
𝑃"
𝑓:&'T

𝑁;
 

35 

where 𝑓&%# is the bit transmission rate, and  

𝐸<
𝑁;

=
1
𝑁;
U 𝑃𝑟
'()$

;
	𝑑𝑡	 

36 

where 𝑡%K# is the time over which the signal is coherently integrated and we are allowing the received 
power to vary over time due to changes in the radar cross section and ranges (and where we are arbitrarily 
defining the time of the start of the coherent integration as 𝑡 = 0). 

 

In the absence of significant flight-vehicle acceleration, the SNR requirement becomes 
=*
>+
≥ 10  or equivalently 	∫ 𝑃𝑟

'()$
; 	𝑑𝑡	 > 10𝑁0 

37 

which can always be achieved with a long enough integration time (but which is probably only relevant 
for our tracking problem if the integration time doesn’t exceed a couple of seconds or so).  

The SNR requirement is more completed if the flight vehicle has significant acceleration,   

U 𝑃𝑟
𝑡𝑖𝑛𝑡

0
𝑑𝑡 > 10𝑁0 Z1 + [

𝑡&?'𝑓𝑐𝑎𝑟𝑟𝑖𝑒𝑟
𝑐

U �̈�𝑑𝑡
𝑡𝑖𝑛𝑡

;
]
2

^
1/2

		, 

38 
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where here �̈� is the unknown effective acceleration in the overall range (𝑅# plus 𝑅$) due to the flight 
vehicle’s actual acceleration plus the geometric changes that occur even with no acceleration and which 
can be large if the flight vehicle is close to either the transmitter or receiver. While some of the total 
effective acceleration can be estimated (from the known motion of the flight vehicle, transmitter, and 
receiver), effects due to the flight vehicle’s actual acceleration cannot. The equation above leads to an 
instantaneous minimum received power requirement 

𝑃𝑟 ≥ 10√2𝑁0`
�̈�𝑓𝑐𝑎𝑟𝑟𝑖𝑒𝑟

𝑐
 

39 

which, if not met, means the signal will not help in closing the link budget at that instant in time.   

The following sections show where these equations come from and contain results from numerical 
experiments intended to validate the theory and to determine the constants used. Since we tried to 
faithfully numerically model a transmitter/flight vehicle/receiver system, the first section following this 
introductory summary describes how we generated signals and the noise associated with that process. We 
then provide background on the ambiguity function approach we use to determine range and Doppler. 
Following that, we describe the effect of adding white average Gaussian noise to the signal (to represent 
the noise power spectral density), the relation between the peak noise and the peak signal amplitudes, how 
we determined the minimum  𝐸F/𝑁+ value for detecting the signal after time integration, and then the 
impact from including the flight vehicle’s acceleration. 

 Background – Gold Code signal and signal orthogonality 

For studying the SNR requirements, we assumed each satellite transmitted its own orthogonal signal, 
specifically a Gold Code. A Gold Code generation requires two steps: 

1. Generation of a Maximum Length Sequence (MLS) with a Linear Feedback Shift Register 
(LFSR)  

2. Generation of the actual Gold Code by XORing 2 MLS’s generated with different taps. 

An example for step 1 is shown in Figure 22. MLS example using a 1+x3+x5 polynomial and seed of 
(0,0,0,0,1).using an LRSR of length 5 with a 1+x3+x5 polynomial for the taps, which means the input (in 
Q1) is the last time step’s output (Q5 in Fig. 1) XOR’ed with the value in the third register (Q3), and that 
all the other registers Qn are given the value in the previous register Qn-1. The actual MLS is the series of 
values that end in Q5. All sequences need a seed, here the initial seed is (0,0,0,0,1) and the  MLS sequence 
is  

10000100101100111110001101110101 

before it repeats itself. The length of the MLS is 2n-1, or 31 in this example. 
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Figure 22. MLS example using a 1+x3+x5 polynomial and seed of (0,0,0,0,1). 

A different MLS is achieved with the same polynomial if a different seed is used, so there are also 2n-1 
unique MLS’s possible with this length LRSR and polynomial. 

For step 2, we XOR two MLS’s generated with different taps, shown in Figure 23. Construction of a Gold 
Code using two MLS sequences. 

 

Figure 23. Construction of a Gold Code using two MLS sequences. 

Here we use different polynomials for both MLS’s, and convention is to use (0,0,…,0,1) for the first MLS 
seed. Each seed for the second MLS gives a different Gold Code (so there are again 2n-1 Gold Codes in 
each family). Each Gold Code has an auto-correlation of 2n-1 with itself and maximum cross-correlation 
of 2(n+1)/2+1 with other Gold Codes in its family. “Preferred” pairs of MLS’s have the lowest cross-
correlation magnitudes (Figure 24). 
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Figure 24. List of preferred pairs of MLS sequences, where [n,m] indicates taps at the m and n 
registers, or a polynomial of the form 1+xm+xn. 

For numerically modeling isolating the signal from one satellite, we use a dot product between the total 
received signal and the code of the satellite signal we want to isolate. First, we use a 1 or -1 (instead of a 
0) for each satellite signal and multiply by the transmitted signal with a varying time shift (also either a 1 
or a -1) and sum the results. For the following simulations with 6 separate Gold Codes on 6 satellites, we 
use the 11-register preferred pair LFSRs with polynomials 1+x2+x5+x8+x11 and 1+x2+x11 . We use the 
seed (1,0,0,0,0,0,0,0,0,0,0) for 1+x2+x5+x8+x11 and the six seeds 

(1,0,0,0,0,0,0,0,0,0,0) 

(0,1,0,0,0,0,0,0,0,0,0) 

(0,0,1,0,0,0,0,0,0,0,0) 

(0,0,0,1,0,0,0,0,0,0,0) 

(0,0,0,0,1,0,0,0,0,0,0) 

(0,0,0,0,0,1,0,0,0,0,0) 

for the 1+x2+x11 polynomial, for each of the six satellite signals.  

The signals from the first three satellites and the summed signal from all six satellites is shown in Figure 
25.  The dot product using the transmitted signal from each of the first three satellites varying the time 
delay is shown in Figure 26. 

The magnitude of the cross correlations of these codes is not a limiting factor in this simulations (because 
we only have 6 satellites total), but also wouldn’t be for a large constellation of thousands of satellites, 
because longer LFSR’s can be picked with arbitrary low levels of cross correlations. 
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Figure 25. First part of transmitted code from satellites 1-3 (note the effect of the seed on the 
Gold Code start) and summation of all six satellites’ Gold Codes at the receiver on 
satellite 1. 
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Figure 26. The dot product between the total received signal the codes from satellites 1, 2, and 3, 

respectively, varying the time delay (normalized to a relative distance of zero). The 
peaks are larger than 2047 because the dot product is taken over a time greater than 
one full waveform. 
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 Background – ambiguity function 

We use an ambiguity function to determine range and Doppler (i.e., range rate of change) for all 
monostatic and bistatic links as shown in Figure 27 

 

 

Figure 27. Definition of 𝑅"#,-. and 𝑅#/0. 

When integrating the ambiguity function  

𝐴(Δ𝜏, Δ𝑓) = U 𝑠"4,(𝑡)𝑠'"@?%∗ (	𝑡 + Δ𝜏) exp{−𝑗2𝜋	Δ𝑓	𝑡}𝑑𝑡 	
B

;

 

40 

over a time interval 𝑇 and with a physical range offset Δ𝜏 and a frequency offset Δ𝑓, where 𝑠#$(K,(𝑡) and 
𝑠$*3(𝑡) are the transmitted and received signal, we expect to 𝐴(Δ𝜏, Δ𝑓) to have the form shown in Fig. 7. 

 

Figure 28. Typical ambiguity function integration 

  



Signal to Noise 

Vehicle Tracking 
Los Alamos National Laboratory Page 4-9 

The offsets in the peak location in Δ𝜏 and Δ𝑓 give the range and Doppler information, specifically 

𝑐	Δ𝜏/2 = 𝑅#$(K, + 𝑅$*3 and 	VWX
X-.//%0/

= 4
4#
(𝑅#$(K, + 𝑅$*3) 

41 

Numerically, at time t we calculated the retarded time of the flight vehicle and then the retarded times of 
all the satellites for the RF that hits the flight vehicle at its retarded time. Then we accumulated the Gold 
code signals (using the 11 register, 2047 bit code described above) from both satellites with the retarded 
times  

𝑠𝑖𝑔𝑛𝑎𝑙(𝑡) = 𝑠𝑖𝑔𝑛𝑎𝑙(𝑡) + (𝐺𝐶'"@?%)𝑐𝑜𝑠p2𝜋𝑓,@""&4"(𝑡 − 𝑡"4'/CD − 𝑡"4'/'"@?%)q 
42 

We used the following formula to find the dot product with the Gold code from either satellite 
�where	𝑑𝑓 = 1 + WX

X-.//%0/
�: 

𝑑𝑜𝑡	𝑝𝑟𝑜𝑑𝑢𝑐𝑡 = 𝑑𝑜𝑡	𝑝𝑟𝑜𝑑𝑢𝑐𝑡
+ 𝑠𝑖𝑔𝑛𝑎𝑙(𝑡)(𝐺𝐶'"@?%|EF)𝑐𝑜𝑠p2𝜋(𝑓,@""&4" × 𝑑𝑓)q(𝑡 − Δ𝜏 − 𝑡,4?' + (𝑑𝑓 − 1)𝑡) 

43 

The area resolution of the ambiguity function is 

Δ𝜏Δ𝑓 =
1

number	of	codes ∗ bitscode
				 

44 

This can lead to excellent resolutions in both spatial distance and Doppler velocity, with the resolution in 
range being the bit “size” and the resolution in velocity being related to the integration time and the range 
resolution: 

Δ𝑅"4% =
𝑐

2𝑓:&'
 

45 

Δ𝑣"4% =
𝑐

𝑓,@""&4"𝑡&?'
		 

46 

as long as the SNR requirement is satisfied. (The spatial resolution simply results from knowing which 
code bin the flight vehicle is in; the velocity resolution arises from the Doppler condition WY/01

3
= WX

X-.//%0/
 

and the frequency resolution Δ𝑓 = 1/𝑡%K#).  

We show our model geometry in Figure 29. We position a transmitter vertically (in y) 1000 km above the 
flight vehicle and a receiver horizontally (in x) 1000 km to the right of the flight vehicle. We let the flight 
vehicle move in the +y direction, nominally at 300 msec. We use a carrier of 6.9 GHz and a code bit 
frequency of 100 MHz. We integrate for different times with about 10k time samples, with a nominal 
integration time of 1.45 msec.  
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Figure 29. Nominal SNR study geometry. 

In the following plots (Figure 30Figure 31), the vertical axis is velocity (in m/sec) and the horizontal axis 
is range (in meters).  We see the ambiguity function integration for 1.45 msec (Figure 30) and 14.5 msec 
(Figure 31).  

  

Figure 30. Bistatic (left) and monostatic (right) ambiguity function integration, 1.45 msec. 

     

Figure 31. Bistatic (left) and monostatic (right) ambiguity function integration, 14.5 
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As expected, we have 10x better velocity resolution with the longer integration time. In Figure 30Figure 
31, we see a Doppler frequency shift for the bistatic geometry (as the flight vehicle is moving to the 
transmitter above it), but none for the monostatic geometry (as the flight vehicle motion is perpendicular 
to its view). 

Since we are subsampling the time, we can see some aliasing (Figure 32), here for 10001 time steps over 
14.5 msec. We can remove the aliasing from our ambiguity window by slightly changing the number of 
time steps (e.g., 9876 time steps over the same interval).  

 
Figure 32. Some aliasing is seen at about -30 m/sec for the bistatic case with an integration time 

of 14.5 msec and 10001 time steps. 

 Effect of noise 

The images of the signals in Figure 30Figure 31 do not include noise. In this section we add in additive 
white Gaussian noise (AWGN). Numerically, we do it with the coding below: 

signal=0. 

       do 130 i=1,3,2 

       mmodulo=(t-tret(i)-tret(2))/deltat 

       if(t-tret(i)-tret(2).lt.0.) mmodulo=mmodulo-1 

       codetime=(t-tret(i)-tret(2))-float(mmodulo)*deltat 

      mbit=1+codetime/delt 

        naddsig(i)=mgcode(i,mbit) 

        if(naddsig(i).eq.0) naddsig(i)=-1 

c 

c  we're actually adding field, not power, amplitudes 

c 

         sign=rand() 

  126    z1=(-2.*log(rand()))**.5*cos(2.*xpi*sign) 
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         if(abs(z1).gt.8) goto 126 

      pmult=25. 

      rsecond=rbi 

      if(i.eq.1) rsecond=rmono 

      powerr=power*rcs*antarea**2/(4.*xpi*xlambda**2)/rfv**2/rsecond**2 

      energyr=powerr*pmult*band 

      ampsig=sqrt(energyr)*dt 

      pnoise=fn*xkb*temp*band 

      energyn=pnoise 

      signoise=sqrt(dt)*sqrt(energyn)/sqrt(2.) 

      if(i.ne.1) signoise=0. 

       

      sig=naddsig(i)*ampsig 

      signal=signal+sig*cos(2.*xpi*(t-tret(i)-tret(2)) 

     1     *freqsig)+signoise*z1 

  130 continue 

We define the code signal elements in Figure 33.  

 
Figure 33. Elements of the code waveform. 
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We assume we are sampling the code and the noise energies at a chip rate (i.e., subdividing the bits of a 
code). The energy of the chip and the energy of the noise during the chip are then: 

𝐸,8&7 = 𝑃" 	Δ𝑡,8&7 
47 

𝐸?G&%4 = 𝑓𝑘H𝑇"𝐵Δ𝑡,8&7 = 𝑓𝑘H𝑇" 
48 

where we assume the bandwidth 𝐵 is transformed limited. 

The following equations are used to predict scalings of the signal and noise amplitudes for coherent 
integration. Using normalized signal and noise amplitudes 

𝐴%&I?@J,	,8&7 = O𝐸,8&7 
49 

𝐴?G&%4,	,8&7 = O𝐸?G&%4 
50 

we have these amplitudes for time durations of Δ𝑡: 

𝐴%&I?@J,	L' = O𝐸:&'
Δ𝑡

Δ𝑡,8&7
 

51 

𝐴?G&%4,L' = O𝐸?G&%4`
Δ𝑡

Δ𝑡,8&7
			. 

52 

Since the bit 𝑆𝑁𝑅 = Z[F*$1%23.4
Z[F*$35%10

= �;58\%#]4*-560
^35%10

�
!
  where 𝐴𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒3[4*is the rms amplitude of the 

code, we confirm that the time integrated SNR scales linearly with Δ𝑡. We can write the peak amplitude 
of the time integrated signal and the noise as 

𝐴𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒%&I?@J = 𝑁,GE4	,9,J4%𝑁:&'%	74"	,GE4𝑁,8&7%	74"	:&'√2𝐴𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒,GE4 
53 

𝐴𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒74@M	?G&%4 = O𝑁,GE4	,9,J4%𝑁:&'%	74"	,GE4𝑁,8&7%	74"	:&'	𝐹O𝑃𝑜𝑤𝑒𝑟?G&%4 
54 

where 𝐹 is a multiplicative factor between rms and peak noise that we’ll discuss more later. In Figure 34 
we confirm the 𝑁3[4*	3I3\*,𝑁&%#,	8*$	3[4*𝑁3H%8,	8*$	&%# and �𝑁3[4*	3I3\*,𝑁&%#,	8*$	3[4*𝑁3H%8,	8*$	&%# 
scalings of the integrated signal and noise respectively. The peak amplitude of the noise can be 
written as 

𝐴𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒74@M	?G&%4 =

O𝑁,GE4	,9,J4%𝑁:&'%	74"	,GE4𝑁,8&7%	74"	:&' �𝐹
N)1(23

OP7J&'QE42(4)56
𝐴𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒%&I?@J�   

55 
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(the ratio  ^35%10
;58\%#]4*-560

 is about 20 in these plots). 

          

Figure 34. Signal and noise amplitudes for two integration times differing by a factor of 10. 

 Relation between peak noise and peak amplitude 

In Figure 35, we see a generic signal with a noise background, with a definition of a noise floor. 

 

 

Figure 35. Relationship between the peak signal and the noise floor. 

The ratio of the amplitude of the signal over the peak noise 

𝐴𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒%&I?@J
𝐴𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒74@M	?G&%4

=
O𝑁,GE4	,9,J4%𝑁:&'%	74"	,GE4

𝐹
√2

𝜎?G&%4
O𝑃𝑜𝑤𝑒𝑟%&I?@J
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needs to be > 1, with 𝐹 about 6 and we recognize 
N)1(23

RSG<4"2(4)56
= 1 √𝑆𝑁𝑅⁄   

57 

Inverting this, we find the minimum requirement is 
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𝑆𝑁𝑅 ≥
𝐹!/2

𝑁,GE4	,9,J4%𝑁:&'%	74"	,GE4
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The factor F is our confidence factor that any peak in the noise will be below the signal for all ranges 
within our range window. Specifically, consider the normal distribution in Figure 36.  

 

 

Figure 36. This is the distribution of noise amplitudes at any location. We’re concerned that a very 
unlikely amplitude (location of the arrow) may appear within our range window. 

For relatively large 𝐹s , the probability that an event will be greater than 𝐹𝜎 (where 𝜎 is the rms width of 

the distribution) for a single trial is approximately 𝑃_^ =
*78& &⁄

!_`: !⁄
. The probability of the peak within 𝐹𝜎 is 

then: 

𝑃74@M	<&'8&?	CN = 1 − (1 − 𝑃CN)> 
59 

We can characterize these probabilities in the following table:  

Table 3.  Noise Probability Table 
# of trials F for P80% F for P90% F for P95% 
10000 4.1 4.3 4.4 

100000 4.6 4.7 4.9 

1000000 5.1 5.2 5.3 

1.00E+07 5.5 5.6 5.7 

1.00E+08 5.9 6.0 6.1 
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We see we have > 95% probability of not having a single random event larger than 6𝜎, even for numbers 
of trials approaching 100M.  This factor of 6 leads to our estimate for the minimum time-integrated SNR 
(i.e., 𝐸F/𝑁+) of about 18. 

 Ambiguity function integration to validate SNR estimate 

In Figure 37, we coherently integrating a signal for a time 𝑡 = 𝑁,#*8,Δ𝑡 =
𝑁3[4*,𝑁&%#,/3[4*𝑁3H%8/&%#Δ𝑡3H%8 for an integration time 𝑡 =0.145 sec   (Δ𝑓$*, is about 6.9 Hz and Δ𝑣$*, is 
about 0.3 m/sec) and with differing amounts of transmitter power. 

   
200 kW  (significantly above noise)                      50 kW (still pretty clear) 
 

 
12.5 kW (noise threshold) 
 
Figure 37. We are decreasing the transmit power from 200 kW to 12.5 kW to determine the threshold where we can 
no longer clearly determine the peak of the ambiguity function. For this case (1000 km ranges, 6.9 GHz carrier 
frequency, 1-m2 antenna areas, and a 1-m2 radar cross section), the minimum transmitter power is about 12.5 kW.  

For the case in Figure 37, (1000 km ranges, 6.9 GHz carrier frequency, 1-m2 antenna areas, and a 1-m2 
radar cross section), the minimum transmitter power is about 12.5 kW. This corresponds to an 𝐸F =
𝑃$ 	𝑡 = 5.3 × 10A6b J and 𝑁+ = 𝑓𝑘G𝑇$ = 8.28 × 10A!6	J (with a noise figure 𝑓 = 2), leading to a 
minimum 𝐸F/𝑁+ of 

𝐸<
𝑁;

≥ 10 
60 

We would have expected a factor of 18 from the earlier analysis (= 𝐹!/2). This ratio corresponds to a 
factor 𝐹 of about 4.5, which is probably due to the lower number of range intervals we are including the 
ambiguity calculation (which would be enabled by an ongoing estimate on the location of the flight 
vehicle from the extended Kalman filter.) 
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 Effect of acceleration on the SNR 

The effect of acceleration on the SNR arises because acceleration leads to a smearing along velocity in 
the ambiguity function, as shown in Figure 38.  

     
 1.45 msec (no noise)    14.5 msec (no noise) 
 

     
145 msec (no noise)    145 msec, 50 kW and standard noise 
   

Figure 38. Top and bottom left: increasing integration times without noise, with 3 g’s of vertical 
acceleration. The velocity resolution improves at first with increasing time integration, 
but eventually the velocity gets smeared out as the acceleration times the integration 
time exceeds the nominal velocity resolution. The image in the bottom left shows that 
the smeared image is more sensitive to noise (compare to the easily determined case 
in Fig. 16 with 50 kW of transmit power).  

The smearing of velocities due to the acceleration makes the image more sensitive to noise. The native 
velocity resolution and the smeared velocity magnitude are: 

Δ𝑣$*,[\]#%[K =
𝑐

𝑓𝑡%K#*)$(#*4
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Δ𝑣,5*($ = �̈�𝑡%K#*)$(#*4 
62 

This leads to an increased SNR requirement if acceleration dominates of 
𝐸F
𝑁+

≥
𝐸F
𝑁+
�
5%K

Δ𝑣,5*($
𝑣$*,

≥ 10
Δ𝑣,5*($
𝑣$*,
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For short enough times, the original expression ignoring acceleration is fine. Adding the two constraints 
in quadrature, we find 
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𝐸<
𝑁;

≥ 10`1 + [
�̈�𝑡&?'! 𝑓,@""&4"

𝑐 ]
!
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Since the acceleration and received power can vary over these integration periods, we should more 
properly represent these terms with integrations over time. Note that the required transmitted power is 

minimized for an integration time of 𝑡%K#,def8[F*$ = �
3

.̈X-.//%0/
, and the minimum power requirement is 

then 	

𝑃$ ≥ 10√2𝑁+�
�̈�𝑓3($$%*$

𝑐
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If the received power is lower than that, it does not help close the link budget. That time can still be part 
of an interval that closes the link budget as long as the integrated received power satisfies 

U 𝑃"
'()$

;
𝑑𝑡 > 10𝑁; Z1 + [

𝑡&?'𝑓,@""&4"
𝑐 U �̈�𝑑𝑡

'()$

;
]
!

^
0/!

		. 
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As described in the Geometric and Signal Simulation section, �̈� has contributions both from the actual 
flight vehicle acceleration 𝐴 and from the geometric motion of the flight vehicle and the tracking 
satellites. Combined, the total effective range acceleration as a function of the transmitter location, the 
receiver location, the actual flight-vehicle velocities relative to the transmitter and receiver 𝑉O⃗ # and 𝑉O⃗$ , and 
flight vehicle acceleration 𝐴 is: 

�̈� =
𝑅�⃗ ' ∙ 𝐴
𝑅'

+
1
𝑅'
p𝑉'! − �̇�'!q +

𝑅�⃗ " ∙ 𝐴
𝑅"

+
1
𝑅"
p𝑉"! − �̇�"!q				 
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Accurate knowledge of the transmitter and receiver locations and an estimate of the flight vehicle’s 
position and velocity can reduce the uncertainty of �̈�, but it will never be reduced below .

/⃗ :∙;⃗
.:

+ ./⃗ /∙;⃗
./

 . The 
uncertainty in the flight vehicle’s position and velocity can be used to estimate the magnitude of the other 
terms using a first-order Taylor expansion. 

Accurate knowledge of the transmitter and receiver locations and an estimate of the flight vehicle’s 
position and velocity can reduce the uncertainty of �̈�, but it will never be reduced below .

/⃗ :∙;⃗
.:

+ ./⃗ /∙;⃗
./

 . The 
uncertainty in the flight vehicle’s position and velocity can be used to estimate the other terms. With a 
nominal relative velocity of 10 km/sec, a nominal impact parameter of 500 km, tracking position 
uncertainties of 100 m/sec and 1 km, the maximum geometric acceleration is about 250 m/sec2, with a 
tracking estimate error of about 5 m/sec2. Thus, it is likely the uncertainty in �̈� will be dominated by the 
actual flight vehicle acceleration 𝐴. 

We can use Equations 66 and 67 along with the Kalman filter tracking results to work through the 
constellation system requirements. For nominal parameters (1.5-m antenna radii, 10-GHz carrier, RCS of 
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about 0.1 m2, and 10-kW transmitter power, and ignoring losses in Equation 36), the received power is 
about 4.4x10-18 W at a range of 1000 km and 𝑁+ is about 8.3x10-21 J. Without acceleration, the link 
budget closes in about 0.019 seconds for these parameters. 

With acceleration, the required minimum power required to close the link budget is shown in the plots 
below, as function of flight vehicle acceleration in g’s. The nominal received power from the paragraph 
above (4.4x10-18 W) can close the link budget for accelerations up to about 4 g’s, but a higher received 
power is needed for higher accelerations, which means some combination of higher transmitter power, 
larger antenna sizes, or smaller maximum ranges. 

  

Figure 39--Plots of the minimum received power required to close the link budget as a function of 
vehicle acceleration (in g’s) (left) and corresponding integration time (right). 

These plots can be used to estimate system requirements with the Kalman filtering tracking, including 
constellation size. For example, to track a flight vehicle with accelerations up to 10 g’s, a minimum 
received power of 6.7x10-18 W is needed. Say a maximum transmitter power of only 5 kW and a 
maximum antenna radius of 0.5 m are possible, and that the radar is only 25% efficient. With these 
constraints, and keeping the carrier frequency and radar cross section the same, Equation 36 tells us that 
the maximum range for closing the link budget is only 560 km. The Kalman filter tracking results will tell 
us how often we need to close the link budget, which, with the geometric satellite results, will in turn tell 
us how many satellites will be needed in our constellation to achieve that range with the frequency 
required by the Kalman filter tracking.   

Note that although the ambiguity function we used is a function of only 𝑅, �̇�, it is theoretically possible to 
search as many range derivatives as we desire. However, we also observe that regardless of how many 
derivatives we search, the next derivative down will always lead to a similar smearing effect, but now 
scaling with a higher power of the integration time. Noting that the 2D ambiguity function is a slice of the 
3D ambiguity function, and poor prediction of  �̈� simply moves the signal we are searching for away 
from the slice plane, we can redefine our ambiguity function as a projection of the likely  �̈� range onto 
the slice plane, at the cost of significantly more computational time. 
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 Geolocation 
The geolocation of the vehicles uses the measurements from the satellites, which are range 𝐫 and range-
rate-of-change �̇� for each bistatic or monostatic pair. There are two approaches for tracking the vehicle. 
The first option, is to take each set of measurements that occur within some predefined time of each other 
and construct where the vehicle was at that time. A filtering algorithm is then used to connect all the 
measured positions with an estimate equation of state to predict where the vehicle is going to go. The 
other option is to use each (𝐫, �̇�) pair to update the filter directly. Both of these options were considered 
and will be discussed below. 

 Equation of State 

Before getting into the geolocation algorithms, let’s define the equation of state that is being assumed for 
the vehicle. In defining the equation of state many of the coordinate systems, and parameters that are used 
in the geolocation algorithms will be discussed. 

The vehicle’s path is assumed to be a great circle. A great circle is defined as the largest circle that can be 
drawn on any given sphere [18]. A vehicle traveling in a great circle can be described with orbital 
mechanics. The parameters for orbital mechanics are 

• 𝑎 the semi-major axis, 

• 𝑖 the inclination, 

• 𝛺 the longitude of the ascending node, 

• 𝜈 the true anomaly, 

• 𝑒 the eccentricity, 

• 𝜔 the argument of periapsis. 

Since, the vehicle is assumed to be traveling in a circle, 𝑒 and 𝜔 are assumed to be zero. This implies that 
𝑎 is the radius of the orbit. The gravitational parameter 𝜇, which is normally defined by 𝐺𝑀+ where 𝐺 is 
Newton’s gravitational constant and 𝑀+ is the mass of the object that is being orbited around, is not 
assumed constant since the trajectory of the vehicle, although assumed to be a great circle, is not in orbit 
around the earth. 

The mean anomaly 𝑀 is defined as 

𝑀 = 𝐸( − 𝑒 ∗ sin(𝐸(),

where	𝐸( = 2arctan £tan(𝜈/2)/�
1 + 𝑒
1 − 𝑒

¤ ,
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since 𝑒 = 0, 𝑀 = 𝜈. If the orbital parameters are known at a time 𝑡+ (𝑎+, 𝑖+, 𝛺+, 𝑒+, 𝜔+, 𝑀+) then at some 
time difference later 𝛥𝑡 the new orbital parameters will be �𝑎+, 𝑖+, 𝛺+, 𝑒+, 𝜔+, 𝑀+ + 𝛥𝑡�𝜇/𝑎-�. The 
change in the orbital parameters is only in the mean anomaly and depends on the gravitational parameter 
and the semi-major axis. 
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With all the assumptions made the list of parameters that are free to change in the algorithms below are 
(𝑎, 𝑖, 𝛺, 𝜇,𝑀), knowing that 𝜔 is assumed to be zero, gives the necessary 6 parameters to map out the 
position and velocity of the vehicle. 

 Converting to and from Cartesian coordinates 

The position and velocity of the satellites are given in Cartesian coordinates. Cartesian coordinates does 
not have any variables that are angles, which makes them easier to work with. The algorithms below 
calculate the position and velocity of the vehicle in Cartesian coordinates. With the equation of state 
being in orbital parameters, a mapping is needed to convert between the two. The functions used can be 
found in the Vehicle Tracking DI repository under geolocation/cart_kep_conversions.py. 

 Multi-static Radar Position Algorithm 

Using the two step weighted-least squares algorithm presented in [19], the multi-static radar position 
algorithm, MSRPA, is able to predict the location of a vehicle to sub (10 m, 10 m/s), as shown in Figure 
40. The details of the equations are in [19]. For here, it would suffice, to say the main equations are 

𝜃z6,! = l𝐺6,!' 𝑊6,!𝐺6,!m
A6𝐺6,!' 𝑊6,!ℎ6,!,

𝑊6 = [𝐵6𝑄𝐵6']A6,
𝑐𝑜𝑣l𝜃z6m = (𝐺6'𝑊6𝐺6)A6,

𝑊! = «𝐵!𝑐𝑜𝑣l𝜃z6m𝐵!'¬
A6,

𝜃z! = (𝐫, �̇�),
𝑐𝑜𝑣l𝜃z!m = [(𝐵6A6𝐺6𝐵!A6𝐺!)𝑄A6(𝐵6A6𝐺6𝐵!A6𝐺!)]A6,
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where 𝐺6, 𝐵6, and ℎ6 are dependent on measured 𝐫 and �̇�, while 𝐺!, 𝐵!, and ℎ!, are dependent on 𝜃z6. 𝑄 is 
the covariance matrix comprised of the uncertainties on 𝐫%, and �̇�% for the 𝑖th bistatic range and their 
correlations. At the end of the day the results are 𝜃z! and its corresponding covariance matrix. The shape 
of 𝑄 and 𝐵6 is (2𝑀𝑁, 2𝑀𝑁), where 𝑀 is the number of receivers and 𝑁 is the number of transmitters, the 
shape of 𝜃z6 is (6 + 2𝑀, 1), where the extra 2𝑀 rows come from the prediction of the range and range-
rate-of-change between the vehicle and the transmitters based on the first step of the weighted least-
squares algorithm. 

The caveat for his approach, is that the because of all the matrix multiplication that is dependent on 
matrices that have some combination of number of receivers and number of transmitters, if a receiver-
transmitter pair was not seen at the measured time then the results are void. An example of this is given in  

Table 4.  An example table showing three consecutive time readings from an earlier version of the 
satellite measurement simulation. Measurements were given at nominal 3 s intervals, but not 
necessary in time. 

Time 
(s) 

Sat 1 Sat 2 𝐫 (km) �̇� (km/s) 

93 172 172 2193.2 -12.9 
93 172 204 1571.5 -7.2 
93 172 642 1537.1 -6.9 
93 172 674 2269.3 -0.8 
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93 204 204 949.8 -1.4 
93 204 642 915.4 -1.1 
93 204 674 1647.6 5.0 
93 642 642 881.0 -0.8 
93 642 674 1613.2 5.2 
93 674 674 2345.4 11.3 
94 172 610 2267.8 -12.9 
94 204 610 1651.9 -7.1 
94 610 610 2355.3 -13.0 
94 610 642 1617.9 -6.7 
94 610 674 2356.0 -0.8 

In Table 4 at time 93 s all the combinations of Sat 1 and Sat 2 are seen, while at 94 s not all combinations 
are seen. For example, at 94 s (Sat 1, Sat 2) = (172, 610) is observed but no other combination with 
satellite number 172 is observed at that time. To correct this, one could use a filtering algorithm to predict 
where the vehicle is located at 94 s, and fill in the gap, but because the measured 𝐫 and �̇� are averaged 
over a reading, this becomes tricky and just using the measured 𝐫 and �̇� would be easier especially when 
the bistatic measurements will come in at semi-random times. 

 Unscented Kalman Filter with Range, Range-Rate-Of-Change Directly 

An unscented Kalman Filter (UKF) will be used to track a vehicle with the orbital equation of state. The 
UKF will get updated with the bistatic measurements. The UKF was used because the problem is non-
linear, and instead of using Jacobians it transforms random points selected in the state space to the 
measured space, and then calculates the averages to determine how to update the state vector instead [17]. 
Jacobians were going to be hard to use since the state vector is in Cartesian coordinates but converts to 
orbital coordinates to predict the next location, and the measured are in 𝐫 and �̇�. 

The UKF algorithm (filterpy.kalman.UnscentedKalmanFilter) from the PYTHON package FilterPy was 
used [16[17]. The success of the UKF is choosing the correct random points in the state space. The 
random points where chosen based off the weights calculated by 
filterpy.kalman.MerweScaledSigmaPoints(𝑛, 𝛼, 𝛽, 𝜅) function with 𝑛 = 6, 𝛼 = 0.5, 𝛽 = 2, and 𝜅 = −3. 
The value of 𝑛 is equal to the number of variables in the state vector, 𝛼 is correlated to how tight the 
points are distributed, 𝛽 = 2 is good if the state vector is represented by a Gaussian, and 𝜅 = 3 − 𝑛. 

The UKF algorithm uses two functions, one to describe how the state vector changes as a function of time 
and one that maps the state vector to the measured vector. The function that describes how the state vector 
changes as a function of time is described in Section 2, where the state vector, in Cartesian coordinates, is 
transformed to orbital parameters, 𝑀 is increased by 𝛥𝑡, and then the orbital parameters are transformed 
back into Cartesian coordinates. The function that maps the state vector to the measured vector follows 
the following steps: 

1. Get list, position and velocity of satellites for each bistatic reading that is being considered (in 
Cartesian coordinates), 

2. Get the random state vector points (in Cartesian coordinates), 
3. Calculate the 𝐫 and �̇� for each bistatic satellite pair with each random state vector. 

These “random measured points” will be compared to the true measured points in the unscented 
transform. Results from the UKF are shown in Figure 41 and Figure 42. The UKF method requires an 
initial guess for the state vectors. The results figures use the truth information from the first reading as the 
state vector with initial errors on the order of 10 km and 0.1 km/s for each Cartesian coordinate. This is to 
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show how fast the UKF converges to the true values. In practice, the initial state vectors and errors will 
most likely come from another system, although if there is a time with “complete” bistatic readings then 
the MSRPA can be used to get the initial guess. Figure 42 shows that the resulting errors converge 
quickly, and are below a km in resolution. 

The UKF method follows the segmented trajectory extremely well. Plotting in orbital parameters, shows 
that changes in 𝑖, 𝛺, 𝜇, and/or 𝑀 from linear could be used as an indication the trajectory is changing 
course. The resulting 𝜒!, that is calculated from 

𝜒! = 𝛥𝐱'ℳ𝛥𝐱, 
70 

where 𝛥𝐱 is the difference between true and reconstructed variables and ℳ is the UKF output covariance 
matrix, shows an order of magnitude difference between the great circle and the segmented trajectories. 

 Comparing Different Satellite Configurations 

Pull distributions were generated to compare satellite configurations. The pull term is defined as 𝑝𝑢𝑙𝑙 =
(𝑡𝑟𝑢𝑒 − 𝑟𝑒𝑐𝑜)/𝜎$*3[ and should have a Gaussian distribution with a mean of 0 and a standard deviation 
equal to 1 if 𝜎$*3[ incorporates all, and the right size, of  model uncertainties. Four different satellite 
configurations were used to demonstrate how optimizing the process noise matrix in the Kalman Filter for 
one constellation effects the pull distribution in other constellations, see Figure 44. Comparing the pull 
distributions for (a) 32x32, (b) 25x25, and (c) 20x20 satellite constellations where the process noise 
matrix was optimize for the 32x32 constellation. The event window used for these plots was 1 s. The four 
constellations were all Walker Constellations with the same inclination, but with different number of 
orbital planes: 32, 25, 20, and 10 respectively. The number of satellites in each plane is the same as the 
total number of planes. 

Just by looking at the true and reconstructed trajectories in Figure 43 as a function of time for the great 
circle simulation, it is obvious that only having 100 satellites (10x10) is not enough. Figure 44 shows that 
the pull distributions get worse when reducing the number of satellites assuming the optimization for the 
32x32 constellation is correct. Obviously once the number of satellites is known, a final optimization 
procedure will need to be done. 

Figure 45 compares two different “event building” techniques. The left plot assumes that the Kalman 
Filter updates every one second while the right plot assumes the Kalman Filter updates on each received 
measurement. Both plots are for a 32x32 constellation and each were optimized to generate a pull 
distribution with a mean of about zero and a standard deviation of about one. Updating the Kalman Filter 
with each measurement individual produces a lower uncertainty on the Cartesian coordinates and 
approaches a constant (assuming the tradeoff uncertainties are high). 

Figure 46 shows the trajectories, comparison to truth, and pull distributions for the segmented simulation. 
Because of the change in direction, it is harder to get a pull distribution in both position and velocity with 
the ideal distribution. But with an assumption the position distribution can be close to a mean of zero and 
a standard deviation of one, with the velocity having a mean of about zero and a standard deviation of 
two. 

All of this shows that the Unscented Kalman Filter algorithm for geolocation is able to accurately track 
the vehicle and that for global coverage, about 400 satellites minimum is needed.  
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Figure 40. (top row) The differences between true and reconstructed as well as (bottom row) the 
resulting uncertainties using the multi-static radar position algorithm. Cartesian 
coordinates are used where black is x, blue is y, and green is z. The left column shows 
the results on the position and the right column shows the results for the velocity. 
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Figure 41: The results of the UKF for (top) a great circle and (b) a segmented trajectories. Each 
plot shows the true (solid) and reconstructed (dotted) trajectories as a function of time. 
From top to bottom in the plot are the orbital parameters (𝑎, 𝑖, 𝛺, 𝜇,𝑀) and the 𝜒! 
comparison between the true and reconstructed.  
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Figure 42: The results of the UKF for (top) a great circle and (bottom) a segmented trajectories. 
Each plot shows (top) the difference between the true and reconstructed trajectories 
and (bottom) the resulting uncertainties as a function of time. From left to right the 
curves are for the orbital parameters (𝑎, 𝑖, 𝛺, 𝜇,𝑀) 
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Figure 43 Comparing True and reconstructed trajectories with four different constellations: (a) 
33x32, (b) 25x25, (c) 20x20, and (d) 10x10. The more orbital planes with more 
satellites the better the reconstruction. 
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Figure 44. Comparing the pull distributions for (a) 32x32, (b) 25x25, and (c) 20x20 satellite 
constellations where the process noise matrix was optimize for the 32x32 constellation. 
The event window used for these plots was 1 s. 

  

Figure 45. Comparing the differences to true and uncertainties in Cartesian coordinates for 
events windows (a) 1s and (b) 0s. As seen, having no defined event window, the 
algorithm converges to a constant error. The time the algorithm takes to converge is 
dependent on how big the uncertainty is on the tip off. Red = x, Green = y, Blue = z  
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Figure 46.  Plots for the segmented track (excluding the first 50 s). (a) Comparing true and 
reconstructed trajectories as a function of time. (b) Looking at differences between true 
and reconstructed for each Cartesian coordinate (Red = x, Green = y, Blue = z), and 
the uncertainty for each Cartesian coordinate as a function of time. (c) The pull 
distributions on the magnitude of the position and velocity. 
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 Combining RCS with Vehicle Simulation and Geolocation 

So far, the different components have been presented independent of each other, except for simulation 
and geolocation. Here, we will look at a scenario where a constellation with 1024 satellites tracks a 
vehicle with a simulated HGV RCS. 

The RCS was simulated for every 10∘ in all four angles of a bistatic system. The results were stored 
assuming linear polarization. For this scenario, we will look at how the results change if we assume a left-
right and a right-right circular polarization for the transmit-receive satellites. 

For calculating the SNR, the following assumptions were made about the system: 

• The digitization rate is 10 MHz. 

• The power of the antenna is 1 kW. 

• The wavelength of the signal is  0.043 m. 

• The gain of the receive antenna is 44.18 dB , and the transmit antenna is 41.18 dB. 

For the SNR calculation we assume that: 

• The energy per noise power spectrum density is 7.1 dB. 

• That the noise power spectrum density is 170.5 dB 

For the geolocation we assume that the vehicle is traveling in a great circle and we are using the 
unscented Kalman filter approach. We also assumed the process noise in orbit parameter space is  

𝑄[8 =	 ³
0 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝜎k!Δ𝑡!

·, 

71 

where 𝜎k!  is an extra variance in the mean anomaly that will be tuned in the simulations. To get the 
process noise in Cartesian coordinates 𝑄, 𝑄[8 is coordinate transformed from orbital parameters to 
Cartesian, and the diagonal of the elements is taken. An extra 𝜎$! is multiplied to the position components 
of 𝑄. This makes only two parameters that are needed to be optimized for the situation at hand.  

Figure 47 shows the results of the simulations with the assumptions made above. The true trajectory for 
the simulation was a great circle. And a delayed correlation can be observed between the number of 
satellites and the pull distributions, as well as the RCS and the pull distributions. Figure 48 shows the 
results for only the left-right polarization, but this time the true trajectory for the simulation was 
segmented. The time around 1500 s in the segmented results is during a transition of the vehicle from one 
great circle path to another. Here the RCS and the pull distributions increase indicating that the satellites 
have a better view of the vehicle, but the assumed equation of state is not as accurate. 

Figure 49 shows how the integration length for each bistatic pair changes as a function of RCS. As 
expected the integration window gets shorter as the RCS increases. Also shown, is the comparison 
between left-right and right-right polarization configurations. The right-right configuration has a higher 
RCS on average than the left-right configuration for the same vehicle flight and linear RCS calculations. 
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Figure 47. Showing the results from the (left) the left-right polarization and (right) the right-right 
polarization satellite configurations. For each plot the (1st row) is the number of 
satellites within 1200 km of the target, (2nd row) the RCS at the end of the integration 
window for each bistatic measurement that passed SNR, (3rd row) the pull distribution 
for the magnitude of the position from the geolocation, and (4th row) the pull distribution 
for the magnitude of the velocity from the geolocation. 

 

Figure 48.  Showing the results of the left-right polarization configuration of the satellites with the 
segmented simulation. The (1st row) is the number of satellites within 1200 km of the 
target, (2nd row) the RCS at the end of the integration window for each bistatic 
measurement that passed SNR, (3rd row) the pull distribution for the magnitude of the 
position from the geolocation, and (4th row) the pull distribution for the magnitude of the 
velocity from the geolocation. 
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Figure 49. (left) The integration time as a function of RCS for left-right, blue, and right-right, 
orange, polarization configurations. (right) The number of bistatic measurements 
integrated over the entire vehicle flight as a function of RCS. 
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 Terminal Phase Tracking 

Here we construct a simple model of a hypersonic vehicle’s terminal descent in order to develop order-of-
magnitude estimates for the range and performance of these vehicles.  We begin with a vehicle at altitude 
50 km, traveling forward at Mach 10 and undergoing simple harmonic motion in a horizontal plane.  The 
amplitude of the oscillations is set to 500 km, with a maximum centripetal acceleration to 10g.  Taking 
this 10g as a maximum tolerable acceleration for the vehicle, and Mach 10 as a maximum attainable 
velocity, in a maximal banking maneuver the vehicle would follow an arc of radius 𝑟 = 	𝑣

!
𝑎¸  =  120 km.   

Figure 50 shows the trajectory such a vehicle would follow when transitioning to a terminal phase with 
maximum bank, and a very gradual downward acceleration of 0.01 g, for illustrative purposes. 

 

Figure 50.  Trajectory of a vehicle with descending at 0.01g, with maximum centripetal 
acceleration of 10g and initial velocity of Mach 10. 

In this simple model, the power lost to air drag by a vehicle moving at velocity 𝑣 is given by 𝑃 =
	6
!
𝜌𝑣-𝐴𝐶4 , where 𝜌	is the atmospheric density, 𝐴 is the projection of the area of the vehicle 

perpendicular to the direction of motion, and 𝐶4 is the drag coefficient.  For the order-of-magnitude 
estimates considered here, we set 𝐴 = 1 m2, and 𝐶4 = 0.1, based on typical drag coefficients for 
streamlined bodies.  The density of air as a function of altitude is represented by an exponential 
distribution 𝜌(ℎ) = 	𝜌+𝑒AH/l, where 𝜌+ is the atmospheric density at sea level, 1.2 kg/m3, and the 
constant H = 6970 m, as determined by a fit to atmospheric data [20].   

Figure 51 shows the power lost to drag as a function of Mach number (in this diagram the Mach number 
is computed using the speed of sound at sea level, 340 m/s).   At an altitude of 50 km, a hypersonic 
vehicle will deposit on the order of several hundred kilowatts of power in the atmosphere, while at lower 
altitudes of 10 km, the energy loss rate can rise substantially to GW.  For comparison, a 1000 kg vehicle 
moving at Mach 10 has a kinetic energy of approximately 6 GJ.  Considering only this drag force, such a 
vehicle could cover a range of almost 3000 km at 50km altitude, and less than 400 km range at 10 km 
altitude.   
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Figure 51. The power lost to air drag at various altitudes as a function of Mach number.  See text 
for details. 

Using this model of vehicle performance, a set of Monte Carlo simulation of terminal phase are run, 
where the vehicle performs a banking descent.  The descending acceleration allowed to randomly vary 
between 0.01 and 1g, and the banking acceleration varies from 5g to the assumed maximum tolerable 
acceleration of 10g.  A subset of the resulting trajectories is shown in Figure 52, and a map of the points 
of impact are shown in Figure 53. 

The impact map shows several features of interest.  First, the two lobes at positive and negative y axis 
values correspond to left and right turns of the vehicles.  There are areas inside the lobes that are excluded 
as points of impact by the finite acceleration tolerance of the vehicles.  Finally, an area on the outer edge 
of the most forward trajectories is excluded by the time taken to reach the ground.  This simple model 
assumes that in the terminal phase the vehicle is fully committed to a downward trajectory, and is thereby 
limited to a maximum possible downward acceleration of 1g.  The substantial horizontal velocity of the 
vehicle thereby prohibits reaching the ground near the point where the vehicle enters is descent. 

To summarize, simple order-of-magnitude estimates give continental to intercontinental-range glide 
lengths at altitudes of 50km and higher, and ranges of few hundred kilometers at altitudes of 10 km.  The 
terminal descent phase in a banking trajectory can reach an area of approximately 500 x 1000 km2, when 
descending from altitudes of 50km. 
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Figure 52.  Simulated terminal phase trajectories. 

 

Figure 53. Map of impact points.  See text for details. 
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 Conclusion 
The tracking of an HGV over its flight path is challenging because of their speeds and their altitudes. 
Compared to traditional ballistic missile systems, they fly at lower altitudes and they can be 
maneuverable. The combination of their hypersonic speed, maneuverability and flight altitude create a 
difficult tracking problem. The work summarized in this report documents a tool developed to explore 
some of the major system design parameters associated with developing a fleet of low earth orbit satellites 
using radar to track HGVs. In this case, we were focused on the problem of tracking one vehicle in a 
rather ideal flight trajectory. Further expansion of this work would include looks at more realistic 
trajectories as well as tackling the problem of tracking multiple vehicles at once. Developing an 
understanding of what is required will define the number of satellites one needs to accomplish this task 
including major design characteristics like power and antenna requirements. 
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Appendix A: Code Repository Primer 

The python code and associated data for this project are stored at git.lanl.gov/mphoffmann/vehicle-
tracking-di. Contact Mitch Hoffmann at mphoffmann@lanl.gov for access. The authors apologize in 
advance for the lack of documentation in the code, but hope this report and in particular the following 
discussion are enough to start you off. 
 
There are 2 folders at the top level of the repository. The dev folder contains the simulation suite as well 
as a few pieces of extraneous code in varying levels of completion. The directory structure in this sub-
folder is not intuitive to how the whole simulation fits together. For those interested in continuing this 
work, some headway on future investigations has been made in this folder. For example, measurement 
simulation code which takes into account acceleration error and allows for arbitrary acceleration 
corrections exists in this folder, but we did not feel it was mature enough to include in the end product. 
 
For those looking to run the simulation as it stands now, we recommend starting in the other top level 
directory, “production.” Here you will find a more clearly laid out simulation structure. A brief outline 
which should aid in getting started follows here: 
 
• sim_structure 

o atmos.py  
This file contains code for simulating atmospheric pressure, density, and temperature. It 
incorporates the 1976 standard atmospheric model, but other models could be added easily. 

o measurements.py 
This file contains the logic for simulating mono and bi-static radar measurements using the 
output of the geometric simulation 

o orbits.py 
This is a large file which contains all the classes and functions for simulating trajectories of 
satellites and flight vehicles. The “HGV” class allows simulation of an arbitrary path. It will take 
inputs of waypoints and create a trajectory of several great circles stitched together, with some 
smoothing to turn the corners into curves. An arbitrary profile function can be passed to this 
class to simulate the in track and vertical acceleration of the vehicle given the current values of 
those states, and the cross-track G-force. You may also pass a vehicle class which contains 
information about the aerodynamics of the vehicle. This is used to calculate attitude during 
complex maneuvers. It may be advisable to include the profile function as part of this class, but 
is not required. 

o snr_params.py 
This file contains the class that stores variables that goes into the SNR calculation 

o Notebooks 
Look at the jupyter notebooks in this folder for examples of how to use the code. The 
“orbit_examples” and “generate_test_scenario” will be especially useful to the new user 

• Simulation_scripts 
o This is where the real simulation scenarios should be kept. There are three examples in there 

now which should help with understanding the workings of the simulation. These scripts 
output csv files which represent the motion of all the satellites and the target, as well as the 
measurements received by the constellation. The files also call the geolocation code to track 
the vehicles and generates its output. 
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• Geolocation 
o This is the directory that stores all the code needed for geolocation 
o geolocation.py 

This file contains the function that shows how to loop over the data and use the SatKalman 
class to track the vehicles. It can be run independently or inside the scripts in 
simulations_scripts. For independent running a configuration file needs to be passed and an 
example of that can be found in the geolocation directory 

o sat_kalman.py 
This file contains all the code to track the object. Although the code for use the MSRPA is in 
there, the default is to use the UKF. 

o position_plots.py 
This file contains all the code used to generate plots using the results of the geolocation. 

o cart_kep_conversions.py 
This file contains all the code to convert between Cartesian coordinates and orbital 
parameters. 

• RCS 
o This directory contains all the code to calculate the RCS of a given bistatic measurement by 

interpolating from RCS calculations for different angles produced in CST. The main file to use is 
p00_vehicleRCS_v3.py. It contains a class called RCS that takes in the file to parse, and the 4 
polarization parameters that are wanted. 
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